
Documentation of andi

Rapid Estimation of Evolutionary Distances between Genomes

https://github.com/EvolBioInf/andi

Fabian Klötzl
kloetzl@evolbio.mpg.de

Version 0.13, 2020-02-11

0.002

E. coli 0127 H6 E2348/69

E. coli O157 H7 str. Sakai

S. boydii CDC 3083-94

S. dysenteriae Sd197

E. coli BW2952

E. coli SMS-3-5

E. coli str. K12 substr. W3110

E. coli str. K12 substr. DH10B

E. coli IAI39

E. coli SE11

S. sonnei Ss046

E. coli UTI89

E. coli str. K-12 substr. MG1655

E. coli 536

E.Coli IAI1

E. coli ATCC 8739

E. coli O55 H7 str. CB9615

S. boydii Sb227

E. coli ED1a

E. coli E24377A

S. flexneri 2a str. 2457T

E. coli APEC O1

E. coli CFT073

S. flexneri 2a str. 301

E. coli HS

E. coli UMN026

E. coli O157 H7 EDL933

E. coli S88

S. flexneri 5 str. 8401

https://github.com/EvolBioInf/andi
mailto:kloetzl@evolbio.mpg.de

Abstract

This is the documentation of the andi program for estimating the evolutionary distance between closely
related genomes. These distances can be used to rapidly infer phylogenies for big sets of genomes. Because
andi does not compute full alignments, it is so e�cient that it scales well up to thousands of bacterial
genomes.

This is scienti�c software. Please cite our paper [?] if you use andi in your publication. Also refer to the
paper for the internals of andi. Additionally, there is a Master’s thesis with even more in depth analysis
of andi [?].

License

This document is release under the Creative Commons Attribution Share-Alike license. This means, you
are free to copy and redistribute this document. You may even remix, tweak and build upon this document,
as long as you credit me for the work I’ve done and release your document under the identical terms.
The full legal code is available online: https://creativecommons.org/licenses/by-sa/4.0/
legalcode.

2

https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Contents

1 Installation 5

1.1 Package Manager . 5
1.2 Source Package . 5
1.3 Installing from Git Repository . 6

2 Usage 7

2.1 Input . 7
2.2 Output . 8
2.3 Options . 8
2.4 Example: eco29 . 9

3 Warnings and Errors 11

3.1 Sequence Related Messages . 11
3.2 Technical Messages . 12
3.3 Output-related Warnings . 12

4 DevOps 13

4.1 Dependencies . 13
4.2 Code Documentation . 13
4.3 Unit Tests . 13
4.4 Known Issues . 14
4.5 Creating a Release . 14

3

1 Installation

1.1 Package Manager

The easiest way to install andi is via a package manager. This also handles all dependencies for you.
Debian and Ubuntu:

~ % sudo apt-get install andi

macOS with homebrew:

~ % brew tap brewsci/bio
~ % brew install andi

ArchLinux AUR package with aura:

~ % aura -A andi

andi is intended to be run in a Unix commandline such as bash or zsh. All examples in this document
are also intended for that environment. You can verify that andi was installed correctly by executing
andi -h. This should give you a list of all available options (see Section 2.3).

1.2 Source Package

To build andi from source, download the latest release from GitHub. Please note, that andi requires the
Gnu Scientific Library and libdivsufsort1 for optimal performance [?].

Once you have downloaded the package, unzip it and change into the newly created directory.

~ % tar -xzvf andi-0.12.tar.gz
~ % cd andi-0.12

Now build and install andi.

~/andi-0.12 % ./configure
~/andi-0.12 % make
~/andi-0.12 % sudo make install

This installs andi for all users on your system. If you do not have root privileges, you will �nd a working
copy of andi in the src subdirectory. For the rest of this documentation, it is assumed, that andi is in
your $PATH.

Now andi should be ready for use. Try invoking the help.

~/andi-0.12 % Usage: andi [OPTIONS...] FILES...
FILES... can be any sequence of FASTA files.
Use ’-’ as file name to read from stdin.

Options:
-b, --bootstrap=INT Print additional bootstrap matrices

--file-of-filenames=FILE Read additional filenames from FILE; one
per line

-j, --join Treat all sequences from one file as a single genome
-l, --low-memory Use less memory at the cost of speed
-m, --model=MODEL Pick an evolutionary model of ’Raw’, ’JC’, ’Kimura’

; default: JC

1https://github.com/y-256/libdivsufsort

5

https://github.com/EvolBioInf/andi/releases
https://github.com/y-256/libdivsufsort

1 Installation

-p FLOAT Significance of an anchor; default: 0.025
--progress=WHEN Print a progress bar ’always’, ’never’, or ’auto’;

default: auto
-t, --threads=INT Set the number of threads; by default, all

processors are used
--truncate-names Truncate names to ten characters

-v, --verbose Prints additional information
-h, --help Display this help and exit

--version Output version information and acknowledgments

andi also comes with a man page, which can be accessed via man andi.

1.3 Installing from Git Repository

To build andi from the Git repo, you will also need the autotools. Refer to your OS documentation for
installation instructions. Once done, execute the following steps.

~ % git clone git@github.com:EvolBioInf/andi.git
~ % cd andi
~/andi % autoreconf -fi -Im4

Continue with the Gnu trinity as described in Section 1.2.

6

2 Usage

The input sequences for andi should be in Fasta format. Any number of �les can be passed. Each �le may
contain more than one sequence.

~ % andi S1.fasta S2.fasta
2
S1 0.0000 0.0979
S2 0.0979 0.0000

If no �le argument is given, andi reads the input from stdin. This makes it convenient to use in Unix
pipelines.

~ % cat S1.fasta S2.fasta | andi
2
S1 0.0000 0.0979
S2 0.0979 0.0000

The output of andi is a matrix in Phylip style: On the �rst line the number of compared sequences is
given, 2 in our example. Then the matrix is printed, where each line is preceded by the name of the ith
sequence. Note that the matrix is symmetric and the main diagonal contains only zeros. The numbers
themselves are evolutionary distances, estimated from substitution rates.

2.1 Input

As mentioned before, andi reads in Fasta �les. It recognizes only the four standard bases and is case
insensitive (RegEx: [acgtACGT]). All other residue symbols are excluded from the analysis and andi
prints a warning, when this happens.

If instead of distinct sequences, a Fasta �le contains contigs belonging to a single taxon, andi will treat
them as a unit when switched into join mode. This can be achieved by using the -j or --join command
line switch.

~ % andi --join E_coli.fasta Shigella.fasta
[Output]

When the join mode is active, the �le names are used to label the individual sequences. Thus, in join
mode, each genome has to be in its own �le, and furthermore, at least one �lename has to be given via the
command line.

If not enough �le names are provided, andi will try to read sequences from the standard input stream.
This behaviour can be explicitly triggered by passing a single dash (-) as a �le name, which is useful in
pipelines.

If andi seems to take unusually long, or requires huge amounts of memory, then you might have for-
gotten the join switch. This makes andi compare each contig instead of each genome, resulting in many
more comparisons! Since version 0.12 andi produces a progressmeter on the standard error stream. andi
tries to be smart about when to show or hide the progress bar. You can manually change this behaviour
using the --progress option.

Starting with version 0.11 andi supports an extra way of input. Instead of passing �le names directly
to andi via the commandline arguments, the �le names may also be read from a �le itself. Using this new
--file-of-filenames argument can work around limitations imposed be the shell.

The following three snippets have the same functionality.

7

2 Usage

~ % andi --join *.fasta
[Output]

~ % ls *.fasta > filenames.txt
~ % andi --join --file-of-filenames filenames.txt
[Output]

~ % ls *.fasta | andi --join --file-of-filenames -
[Output]

2.2 Output

The output of andi is written to stdout. This makes it easy to use on the command line and within shell
scripts. As seen before, the matrix, computed by andi, is given in Phylip format [?].

~ % cat S1.fasta S2.fasta | andi
2
S1 0.0000 0.0979
S2 0.0979 0.0000

If the computation completed successfully, andi exits with the status code 0. Otherwise, the value of
errno is used as the exit code. andi can also produce warnings and error messages for the user’s conve-
nience. These messages are printed to stderr and thus do not interfere with the normal output.

2.3 Options

andi takes a small number of commandline options, of which even fewer are of interest on a day-to-day
basis. If andi -h displays a -t option, then andi was compiled with multi-threading support (imple-
mented using OpenMP). By default, andi uses all available processors. However, to restrict the number of
threads, use -t.

~ % time andi ../test/1M.1.fasta -t 1
2
S1 0.0000 0.0995
S2 0.0995 0.0000
./andi ../test/1M.1.fasta 0,60s user 0,01s system 99% cpu 0,613 total
~ % time andi ../test/1M.1.fasta -t 2
2
S1 0.0000 0.0995
S2 0.0995 0.0000
./andi ../test/1M.1.fasta -t 2 0,67s user 0,03s system 195% cpu 0,362

total

In the above examples the runtime dropped from 0.613 s, to 0.362 s using two threads. Giving andi
more threads than input genomes leads to no further speed improvement. The other important option is
--join (see Section 2.1).

By default, the distances computed by andi are Jukes-Cantor corrected [?]. Other evolutionary models
are also implemented (Kimura, raw). The --model parameter can be used to switch between them.

Since version 0.9.4 andi includes a bootstrapping method. It can be activated via the --bootstrap
or -b switch. This option takes a numeric argument representing the number of matrices to create. The
output can then be piped into phylip. For more information on computing support values from distance
matrices see [?].

~ % andi -b 2 ../test/1M.1.fasta
2
S1 0.0000 0.1067

8

2.4 Example: eco29

S2 0.1067 0.0000
2
S1 0.0000 0.1071
S2 0.1071 0.0000

The original phylip only supports distance matrices with names no longer than ten characters. However,
this sometimes leads to problems with long accession numbers. Starting with version 0.11 andi prints the
full name of a sequence, even if it is longer than ten characters. If your downstream tools have trouble with
this, use --truncate-names to reimpose the limit.

Also new in version 0.11 is the --file-of-filenames option. See Section 2.1 for details.

2.4 Example: eco29

Here follows a real-world example of how to use andi. It makes heavy use of the commandline and tools
like Phylip. If you prefer R, check out this excellent blog post by Kathryn Holt.1

As a data set we use eco29; 29 genomes of E. Coli and Shigella. You can download the data from
here: http://guanine.evolbio.mpg.de/andi/eco29.fasta.gz. The genomes have an aver-
age length of 4.9 million nucleotides amounting to a total 138MB.
eco29 comes a single fasta �le, where each sequence is a genome. To calculate their pairwise distances,

enter

~ % andi eco29.fasta > eco29.mat
andi: The input sequences contained characters other than acgtACGT.

These were automatically stripped to ensure correct results.

The eco29 data set includes non-canonical nucleotides, such as Y, N, and P, which get stripped from the
input sequences. The resulting matrix is stored in eco29.mat; Here is a small excerpt:

~ % head -n 5 eco29.mat | cut -d ’ ’ -f 1-5
29
gi|563845 0.0000e+00 1.8388e-02 1.8439e-02 2.6398e-02
gi|342360 1.8388e-02 0.0000e+00 4.4029e-04 2.6166e-02
gi|300439 1.8439e-02 4.4029e-04 0.0000e+00 2.6123e-02
gi|261117 2.6398e-02 2.6166e-02 2.6123e-02 0.0000e+00

From this we compute a tree via neighbor-joining using a Phylip wrapper called Embassy.2

~ % fneighbor -datafile eco29.mat -outfile eco29.phylipdump

To make this tree easier to read, we can midpoint-root it.

~ % fretree -spp 29 -intreefile eco29.treefile -outtreefile eco29.tree
<<EOF

M
X
Y
R
EOF

The �le eco29.tree now contains the tree in Newick format. This can be plotted using [?]

~ % figtree eco29.tree &

to yield

1http://holtlab.net/2015/05/08/r-code-to-infer-tree-from-andi-output/
2http://emboss.sourceforge.net/embassy/#PHYLIP

9

http://guanine.evolbio.mpg.de/andi/eco29.fasta.gz
http://holtlab.net/2015/05/08/r-code-to-infer-tree-from-andi-output/
http://emboss.sourceforge.net/embassy/#PHYLIP

2 Usage

0.002

E. coli 0127 H6 E2348/69

E. coli O157 H7 str. Sakai

S. boydii CDC 3083-94

S. dysenteriae Sd197

E. coli BW2952

E. coli SMS-3-5

E. coli str. K12 substr. W3110

E. coli str. K12 substr. DH10B

E. coli IAI39

E. coli SE11

S. sonnei Ss046

E. coli UTI89

E. coli str. K-12 substr. MG1655

E. coli 536

E.Coli IAI1

E. coli ATCC 8739

E. coli O55 H7 str. CB9615

S. boydii Sb227

E. coli ED1a

E. coli E24377A

S. flexneri 2a str. 2457T

E. coli APEC O1

E. coli CFT073

S. flexneri 2a str. 301

E. coli HS

E. coli UMN026

E. coli O157 H7 EDL933

E. coli S88

S. flexneri 5 str. 8401

10

3 Warnings and Errors

Here be an explanation of all possible errors. Other errors may occur and are due to the failure of underlying
functions (e. g. read(3)). All warning messages are printed to stderr. Most errors are non-recoverable
and will result in andi exiting with a non-zero state.

3.1 Sequence Related Messages

Unexpected Character

andi is pretty pedantic about the formatting of FASTA �les. If you violate the syntax, andi will print the
�le name, the line and the problematic character. These errors are non-recovering, meaning no further
sequences are read from the invalid �le. The checks are implemented by the pfasta library.

Non acgtACGT Nucleotides Stripped

Our models of genome evolution (JC, Kimura) only work on the four canonical types of nucleotides. All
others are stripped from the sequences. This can be ignored in most cases.

Too Short Sequence

andi was designed for big data sets of whole genomes. On short sequences the distance estimates are
inaccurate. Use an multiple sequence alignment instead.

Too Long Sequence

libdivsufsort limits the length of a sequence to 31 bits. That count includes the reverse complement.
So the technical limit for a sequence analysis is 230 = 1.073.741.824. Unfortunately, that excludes (full)
human and mice genomes. Per-chromosome analysis works just �ne.

Empty Sequence

One of the given sequences contained either no nucleotides at all, or only non-canonical ones.

Less than two sequences given

As andi tries to compare sequences, at least two need to be supplied. Note that andi may have regarded
some of your given sequences as unusable.

Maximum Number of Sequences

The maximum number of sequences andi can possible compare is huge (roughly 457.845.052). I doubt
anyone will ever reach that limit. Please send me a mail, if you do.

11

https://github.com/kloetzl/pfasta

3 Warnings and Errors

3.2 Technical Messages

Out of Memory

If andi runs out of memory, it gives up. Either free memory, run andi on a bigger machine, try the --low
-memory mode or reduce the number of threads.

RNG allocation

Some technical thing failed. If it keeps failing repeatedly, �le a bug.

Bootstrapping failed

This should not happen.

Failed index creation

This should not happen, either.

Skipped and ignored Arguments

Some command line parameters of andi require arguments. If these are not of the expected type, a warning
is given. See Section 2.3 for their correct usage.

3.3 Output-related Warnings

As the input sequences get more evolutionary divergent, andi �nds less homologous anchors. With less
anchors, less nucleotides are considered homologous between two sequences. If no anchors are found,
comparison fails and nan is printed instead. See our paper and especially Figure 2 for details.

NaN

No homologous sections were found. Your sequences are very divergent (d > 0.5) or sprout a lot of indels
that make comparison di�cult.

Little Homology

Very few anchors were found and thus only a tiny part of the sequences is considered homologous. Expect
that the given distance is erroneous.

Too long name

If you added the --truncate-names switch and an input name is longer than ten characters, you will
receive this warning.

12

4 DevOps

andi is written in C/C++; mostly C99 with some parts in C++11. The sources are released on GitHub as
free software under theGnuGeneral Public License version 3 [?]. Prebundled packages using autoconf
are also available, with the latest release being 0.13 at the time of writing.

If you are interested in the internals of andi, consult the paper [?] or my Master’s thesis [?]. Both explain
the used approach in detail. The latter emphasizes the used algorithms, data structures and their e�cient
implementation.

4.1 Dependencies

Here is a complete list of dependencies required for developing andi.

• A C and a C++11 compiler,

• the autotools,

• the Gnu Scientific Library,

• Pdflatex with various packages for the manual,

• Git,

• glib2 for the unit tests,

• doxygen,

• and libdivsufsort.

4.2 Code Documentation

Every function in andi is documented using doxygen style comments. To create the documentation run
make code-docs in the main directory. You will then �nd the documentation under ./docs.

4.3 Unit Tests

The unit tests are located in the andi repository under the ./test directory. Because they require glib2,
and a C++11 compiler, they are deactivated by default. To enable them, execute

~/andi % ./configure --enable-unit-tests

during the installation process. You can then verify the build via

~/andi % make check

The unit tests are also checked each time a commit is sent to the repository. This is done via TravisCI.1
Thus, a warning is produced, when the builds fail, or the unit tests did not run successfully. Currently, the
unit tests cover more than 75% of the code. This is computed via the Travis builds and a service called
Coveralls.2

1https://travis-ci.org/EvolBioInf/andi
2https://coveralls.io/r/EvolBioInf/andi

13

https://travis-ci.org/EvolBioInf/andi
https://coveralls.io/r/EvolBioInf/andi

4 DevOps

4.4 Known Issues

These minor issues are known. I intend to �x them, when I have time.

1. This code will not work under Windows. At two places Unix-only code is used: �lepath-separators
are assumed to be / and �le-descriptors are used for I/O.

2. Unit tests for the bootstrapped matrices are missing.

3. Cached intervals are sometimes not “as deep as they could be”. If that got �xed get_match_cache
could bail out on ij.lcp < CACHE_LENGTH. However the esa_init_cache code is the most
fragile part and should be handled with care.

4.5 Creating a Release

A release should be a stable version of andi with signi�cant improvements over the last version. dotdot
releases should be avoided.

Once andi is matured, the new features implemented, and all tests were run, a new release can be created.
First, increase the version number in configure.ac. Commit that change in git, and tag this commit with
vX.y. Tags should be annotated and signed, if possible. This manual then needs manual rebuilding.

Ensure that andi is ready for packaging with autoconf.

~ % make distcheck
make dist-gzip am__post_remove_distdir=’@:’
make[1]: Entering directory ‘/home/kloetzl/Projects/andi’
if test -d "andi-0.9.1-beta"; then find "andi-0.9.1-beta" -type d ! -

perm -200 -exec chmod u+w {} ’;’ && rm -rf "andi-0.9.1-beta" || {
sleep 5 && rm -rf "andi-0.9.1-beta"; }; else :; fi

test -d "andi-0.9.1-beta" || mkdir "andi-0.9.1-beta"
 (cd src && make top_distdir=../andi-0.9.1-beta distdir=../andi

-0.9.1-beta/src \
 am__remove_distdir=: am__skip_length_check=: am__skip_mode_fix=:

distdir)

... Loads of output ...

===
andi-0.9.1-beta archives ready for distribution:
andi-0.9.1-beta.tar.gz
===

If the command does not build successfully, no tarballs will be created. This may necessitate further
study of autoconf and automake.

Also verify that the recent changes did not create a performance regression. This includes testing both
ends of the scale: eco29 and Pneu3085. Both should be reasonable close to previous releases.

Create another commit, where you set the version number to the next release (e. g., vX.z-beta). This
assures that there is only one commit and build with that speci�c version.

14

	Installation
	Package Manager
	Source Package
	Installing from Git Repository

	Usage
	Input
	Output
	Options
	Example: eco29

	Warnings and Errors
	Sequence Related Messages
	Technical Messages
	Output-related Warnings

	DevOps
	Dependencies
	Code Documentation
	Unit Tests
	Known Issues
	Creating a Release

